Package: classifly 0.4.1.9000

classifly: Explore Classification Models in High Dimensions

Given $p$-dimensional training data containing $d$ groups (the design space), a classification algorithm (classifier) predicts which group new data belongs to. Generally the input to these algorithms is high dimensional, and the boundaries between groups will be high dimensional and perhaps curvilinear or multi-faceted. This package implements methods for understanding the division of space between the groups.

Authors:Hadley Wickham <[email protected]>

classifly_0.4.1.9000.tar.gz
classifly_0.4.1.9000.zip(r-4.5)classifly_0.4.1.9000.zip(r-4.4)classifly_0.4.1.9000.zip(r-4.3)
classifly_0.4.1.9000.tgz(r-4.4-any)classifly_0.4.1.9000.tgz(r-4.3-any)
classifly_0.4.1.9000.tar.gz(r-4.5-noble)classifly_0.4.1.9000.tar.gz(r-4.4-noble)
classifly_0.4.1.9000.tgz(r-4.4-emscripten)classifly_0.4.1.9000.tgz(r-4.3-emscripten)
classifly.pdf |classifly.html
classifly/json (API)
NEWS

# Install 'classifly' in R:
install.packages('classifly', repos = c('https://hadley.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/hadley/classifly/issues

Datasets:

On CRAN:

3.54 score 10 stars 35 scripts 208 downloads 9 exports 4 dependencies

Last updated 3 years agofrom:d7608e0c97. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 04 2024
R-4.5-winNOTEDec 04 2024
R-4.5-linuxNOTEDec 04 2024
R-4.4-winNOTEDec 04 2024
R-4.4-macNOTEDec 04 2024
R-4.3-winNOTEDec 04 2024
R-4.3-macNOTEDec 04 2024

Exports:advantageclassiflyclassifyexploregenerate_classification_dataknnfposteriorsimvarvariables

Dependencies:classMASSplyrRcpp