Package: classifly 0.4.1.9000

classifly: Explore Classification Models in High Dimensions

Given $p$-dimensional training data containing $d$ groups (the design space), a classification algorithm (classifier) predicts which group new data belongs to. Generally the input to these algorithms is high dimensional, and the boundaries between groups will be high dimensional and perhaps curvilinear or multi-faceted. This package implements methods for understanding the division of space between the groups.

Authors:Hadley Wickham <[email protected]>

classifly_0.4.1.9000.tar.gz
classifly_0.4.1.9000.zip(r-4.5)classifly_0.4.1.9000.zip(r-4.4)classifly_0.4.1.9000.zip(r-4.3)
classifly_0.4.1.9000.tgz(r-4.5-any)classifly_0.4.1.9000.tgz(r-4.4-any)classifly_0.4.1.9000.tgz(r-4.3-any)
classifly_0.4.1.9000.tar.gz(r-4.5-noble)classifly_0.4.1.9000.tar.gz(r-4.4-noble)
classifly_0.4.1.9000.tgz(r-4.4-emscripten)classifly_0.4.1.9000.tgz(r-4.3-emscripten)
classifly.pdf |classifly.html
classifly/json (API)
NEWS

# Install 'classifly' in R:
install.packages('classifly', repos = c('https://hadley.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/hadley/classifly/issues

Datasets:

On CRAN:

Conda:

3.54 score 10 stars 35 scripts 308 downloads 9 exports 4 dependencies

Last updated 3 years agofrom:d7608e0c97. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 04 2025
R-4.5-winNOTEMar 04 2025
R-4.5-macNOTEMar 04 2025
R-4.5-linuxNOTEMar 04 2025
R-4.4-winNOTEMar 04 2025
R-4.4-macNOTEMar 04 2025
R-4.4-linuxNOTEMar 04 2025
R-4.3-winNOTEMar 04 2025
R-4.3-macNOTEMar 04 2025

Exports:advantageclassiflyclassifyexploregenerate_classification_dataknnfposteriorsimvarvariables

Dependencies:classMASSplyrRcpp