
Package: proto (via r-universe)
September 3, 2024

Version 1.0.0.9000

Title Prototype Object-Based Programming

Description An object oriented system using object-based, also called
prototype-based, rather than class-based object oriented ideas.

License GPL-2

URL https://github.com/hadley/proto

BugReports https://github.com/hadley/proto/issues

Suggests testthat, covr

RoxygenNote 5.0.1.9000

Repository https://hadley.r-universe.dev

RemoteUrl https://github.com/hadley/proto

RemoteRef HEAD

RemoteSha 833b200e0441a5acc91e45ec06667fcdbd055261

Contents
proto-package . 1
proto . 2

Index 7

proto-package Object-Oriented Programming with the Prototype Model

Description

Object-oriented programming with the prototype model. "proto" facilitates object-oriented pro-
gramming using an approach that emphasizes objects rather than classes (although it is powerful
enough to readily represent classes too).

1

https://github.com/hadley/proto
https://github.com/hadley/proto/issues

2 proto

Examples

cat("parent\n")
oop <- proto(x = 10, view = function(.) paste("this is a:", .$x))
oop$ls()
oop$view()

cat("override view in parent\n")
ooc1 <- oop$proto(view = function(.) paste("this is a: ***", .$x, "***"))
ooc1$view()

cat("override x in parent\n")
ooc2 <- oop$proto(x = 20)
ooc2$view()

proto Prototype object-based programming

Description

proto creates or modifies objects of the proto object oriented system.

Usage

proto(. = parent.env(envir), expr = { }, envir = new.env(parent =
parent.frame()), ..., funEnvir = envir)

as.proto(x, ...)

S3 method for class 'environment'
as.proto(x, ...)

S3 method for class 'proto'
as.proto(x, ...)

S3 method for class 'list'
as.proto(x, envir, parent, all.names = FALSE, ...,
funEnvir = envir, SELECT = function(x) TRUE)

is.proto(x)

Arguments

. the parent object of the new object. May be a proto object or an environment.

expr a series of statements enclosed in braces that define the variables and methods
of the object. Empty braces, the default, may be used if there are no variables or
methods to add at this time.

proto 3

envir an existing prototype object or environment into which the variables and meth-
ods defined in expr are placed. If omitted a new object is created.

... for proto these are components to be embedded in the new object. For as.proto.list
these are arguments to pass to proto in the case that a new object is created. for
$.proto the method is evaluated at these arguments.

funEnvir the environment of methods passed via . . . are automatically set to this environ-
ment. Normally this argument is omitted, defaulting to envir; however, one can
specify FALSE to cause their environment to not be set or one can specify some
other environment or proto object to which their environment is to be set.

x a list.

parent a prototype object or environment which is to be used as the parent of the object.
If envir is specified then its parent is coerced to parent.

all.names only names not starting with a dot are copied unless all.names is TRUE.

SELECT a function which given an object returns TRUE or FALSE such that only those for
which SELECT returns TRUE are kept in the returned proto object.

list list whose components are an alternate way to specifying arguments in place of
...{}

Details

The proto class is an S3 subclass of the R environment class. In particular this implies that
proto objects have single inheritance and mutable state as all environments do. The proto function
creates and modifies objects of the proto class. It (1) sets the parent of codeenvir to parent, (2)
evaluates expr in the envir environment and (3) lazily evaluates the arguments in ...{} in the
parent environment resetting the environment of any functions (where the resetting is also done
lazily). All such functions are known as methods and should have the receiver object as their first
argument. Conventionally this is . (i.e. a dot). Also .that and .super variables are added to
the environment envir. These point to the object itself and its parent, respectively. Note that
proto can be used as a method and overridden like any other method. This allows objects to have
object-specific versions of proto. There also exist that() and super() functions which have the
same purpose as .that and .super but do not rely on the .that and .super. .that, .super,
that() and super() can only be used within methods that have their object as their environment.
In addition that() and super() may only be used within the top level of such methods (and not
within functions within such methods).

as.proto is a generic with methods for environments, proto objects and lists.

as.proto.list copies each component, el, of the list x into the the environment or proto object
envir for which FUN(el) is TRUE. Components whose name begins with a dot, ., are not copied
unless all.names is TRUE (and FUN(el) is TRUE). The result is a proto object whose parent is
parent. If envir is omitted a new object is created through a call to proto with parent and ...{}
as arguments. If parent is also omitted then the current environment is the parent. Note that if
parent is a proto object with its own proto method then the proto method of the parent will
override the one described here in which case the functionality may differ.

$ can be used to access or set variables and methods in an object.

When $ is used for getting variables and methods, calls of the form obj$v search for v in obj and
if not found search upwards through the ancestors of obj until found unless the name v begins with
two dots ... In that case no upward search is done.

4 proto

If meth is a function then obj$meth is an object of class c("instantiatedProtoMethod", "function")
which is a proto method with the first, i.e. proto slot, already filled in. It is normally used in the con-
text of a call to a method, e.g. obj$meth(x,y). There also exists print.instantiatedProtoMethod
for printing such objects. Be aware that an instantiated proto method is not the same as a proto
method. An instantiated proto method has its first argument filled (with the receiver object) whereas
the first argument of a proto method does not. If it is desired to actually return the method as a value
not in the context of a call then use the form obj$with(meth) or obj[[meth]] which are similar
to with(obj, meth) except that the variation using with will search through ancestors while [[
will not search through ancestors). The difference between obj$meth and obj$with(meth) is that
in the first case obj implicitly provides the first argument to the call so that obj$meth(x,y) and
obj$with(meth)(obj,x,y) are equivalent while in the case of obj$with(meth) the first argument
is not automatically inserted.

$.proto also has a multiple argument form. If three or more arguments are present then they
specify the arguments at which the instantiated method is to be evaluated. In this form the receiver
object must be specified explicitly. This form can be used in situations where the highest speed is
required such as in the inner loops of computations.

The forms .that$meth and .super$meth are special and should only be used within methods.
.that refers to the object in which the current method is located and .super refers to the parent of
.that. In both cases the receiver object must be specified as the first argument – the receiver is not
automatically inserted as with other usages of $.

$ can be used to set variables and methods in an object. No ancestors are searched for the set form
of $. If the variable is the special variable .super then not only is the variable set but the object’s
parent is set to .super.

A with method is available for proto objects.

is.proto(p) returns TRUE if p is a prototype object.

str.proto is provided for inspecting proto objects.

Value

proto and as.proto all return proto objects.

Note

proto methods can be used with environments but some care must be taken. Problems can be
avoided by always using proto objects in these cases. This note discusses the pitfalls of using
environments for those cases where such interfacing is needed.

If e is an environment then e$x will only search for x in e and no further whereas if e were a proto
object its ancestors will be searched as well. For example, if the parent of a proto object is an
environment but not itself a proto object then .super$x references in the methods of that object
will only look as far as the parent.

Also note that the form e$meth(...) when used with an environment will not automatically insert e
as the first argument and so environments can only be used with methods by using the more verbose
e$meth(e, ...). Even then it is not exactly equivalent since meth will only be looked up in e but
not its ancestors. To get precise equivalence write the even more verbose with(e, meth)(e,...).

If the user has a proto object obj which is a child of the global environment and whose methods
use .super then .super will refer to an environment, not a proto object (unless the global environ-
ment is coerced to a proto object) and therefore be faced with the search situation discussed above.

proto 5

One solution is to create an empty root object between the global environment and obj as in this
diagram Root <- obj$.super <- proto(.GlobalEnv) where Root is the root object. Now .super
references will reference Root, which is a proto object so search will occur as expected. proto does
not provide such a root object automatically but the user can create one easily, if desired.

Although not recommended, it possible to coerce the global environment to a proto object by issuing
the command as.proto(.GlobalEnv). This will effectively make the global environment a proto
root object but has the potential to break other software, although the authors have not actually
found any software that it breaks.

See Also

as.list, names, environment

Examples

oo <- proto(expr = {
x = c(10, 20, 15, 19, 17)
location = function(.) mean(.$x) # 1st arg is object
rms = function(.) sqrt(mean((.$x - .$location())^2))
bias = function(., b) .$x <- .$x + b

})

debug(oo$with(rms)) # cannot use oo$rms to pass method as a value
undebug(oo$with(rms)) # cannot use oo$rms to pass method as a value

oo2 <- oo$proto(location = function(.) median(.$x))
oo2$rms() # note that first argument is omitted.
oo2$ls() # list components of oo2
oo2$as.list() # contents of oo2 as a list
oo2 # oo2 itself
oo2$parent.env() # same
oo2$parent.env()$as.list() # contents of parent of oo2
oo2$print()
oo2$ls()
oo2$str()
oo3 <- oo2
oo2$identical(oo3)
oo2$identical(oo)

start off with Root to avoid problem cited in Note
Root <- proto()
oop <- Root$proto(a = 1, incr = function(.) .$a <- .$a+1)
ooc <- oop$proto(a = 3) # ooc is child of oop but with a=3
ooc$incr()
ooc$a # 4

same but proto overridden to force a to be specified
oop$proto <- function(., a) { .super$proto(., a=a) }
Not run:
ooc2 <- oop$proto() # Error. Argument "a" is missing, with no default.

End(Not run)

6 proto

ooc2 <- oop$proto(a = 10)
ooc2$incr()
ooc2$a # 11

use of with to eliminate having to write .$a
o2 <- proto(a = 1, incr = function(.) with(., a <- a+1))
o2c <- as.proto(o2$as.list()) # o2c is a clone of o2
o2d <- o2$proto() # o2d is a child of o2
o2$a <- 2
o2c$a # a not changed by assignment in line above
o2d$a # a is changed since a not found in o2d so found in o2

p <- proto(a = 0, incr = function(., x) .$a <- .$a + x)
pc <- p$proto(a = 100)

p$incr(7)
p$incr(x=7)
p$a

Index

∗ programming
proto, 2
proto-package, 1

. (proto), 2

.super (proto), 2

.that (proto), 2
$.proto (proto), 2
$<-.proto (proto), 2

as.list, 5
as.proto (proto), 2

environment, 5

is.proto (proto), 2
isnot.function (proto), 2

names, 5

print.instantiatedProtoMethod (proto), 2
proto, 2
proto-package, 1

str.proto (proto), 2
super (proto), 2

that (proto), 2
this (proto), 2

with.proto (proto), 2

7

	proto-package
	proto
	Index

