Package 'meifly'

Title: Interactive Model Exploration using 'GGobi'
Description: Exploratory model analysis with <http://ggobi.org>. Fit and graphical explore ensembles of linear models.
Authors: Hadley Wickham <[email protected]>
Maintainer: Hadley Wickham <[email protected]>
License: MIT + file LICENSE
Version: 0.3.1.9000
Built: 2024-12-17 04:41:25 UTC
Source: https://github.com/hadley/meifly

Help Index


Calculcate coefficients for all models in ensemble. Returns raw, t-value, absolute t-value, and standardised coefficent values.

Description

Calculcate coefficients for all models in ensemble. Returns raw, t-value, absolute t-value, and standardised coefficent values.

Usage

## S3 method for class 'ensemble'
coef(object, ...)

Arguments

object

ensemble of models

...

other arguments ignored


General ensemble of models from models in global workspace'

Description

General ensemble of models from models in global workspace'

Usage

findmodels(modeltype = "lm", dataset, pattern)

Arguments

modeltype

model class

dataset

if specified, all models must use this dataset

pattern

pattern of model object names to match


Fit all combinations of x variables ($2^p$).

Description

This technique generalises fitbest. While it is much slower it will work for any type of model.

Usage

fitall(y, x, method = "lm", ...)

Arguments

y

vector y values

x

matrix of x values

method

name of method used to fit the model, e.g lm,rlm

...

other arguments passed on to method

Examples

y <- swiss$Fertility
x <- swiss[, -1]
mods <- fitall(y, x, "lm")

Use the leaps package to generate the best subsets.

Description

Use the leaps package to generate the best subsets.

Usage

fitbest(formula, data, nbest = 10, ...)

Arguments

formula

model formula

data

data frame

nbest

number of subsets of each size to record

...

other arguments passed to regsubsets

Examples

y <- swiss$Fertility
mods <- fitbest(Fertility ~ ., swiss)

Generate linear models by bootstrapping observations

Description

Generate linear models by bootstrapping observations

Usage

lmboot(formula, data, n = 100)

Arguments

formula

model formula

data

data set

n

number of bootstrapped data sets to generate


Interactive model ensemble exploration.

Description

Interactive model ensemble exploration.


Calculate residuals for all models in ensemble.

Description

Calculate residuals for all models in ensemble.

Usage

## S3 method for class 'ensemble'
residuals(object, ...)

Arguments

object

ensemble of models

...

other arguments ignored

Value

data.frame of class resid_ensemble

See Also

summary.resid_ensemble


Returns degrees of freedom, log likelihood, R-squared, AIC, BIC and adjusted R-squared.

Description

Returns degrees of freedom, log likelihood, R-squared, AIC, BIC and adjusted R-squared.

Usage

## S3 method for class 'ensemble'
summary(object, ...)

Arguments

object

ensemble of models

...

other arguments ignored


Summarise residuals from ensemble.

Description

Summarise residuals from ensemble.

Usage

## S3 method for class 'resid_ensemble'
summary(object, data = attr(object, "data"), ...)

Arguments

object

model residuals from residuals.ensemble

data

associated data set

...

other arguments ignored


Summarise variable ensemble.

Description

Provides variable level statistics.

Usage

## S3 method for class 'variable_ensemble'
summary(object, ...)

Arguments

object

ensemble of models

...

other arguments ignored